Vectors

Monday, May 8, 2023 8:54 AM
$P=(-1,2,1)$
$Q=(2,0,3)$

* P typically beginning point*
vector: given $P=\left(x_{1}, y_{1}, z_{1}\right) \& Q=\left(x_{2}, y_{2}, z_{2}\right)$ points, the vector $\overrightarrow{P Q}$ is denoted by (q defined by) $\overrightarrow{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$
ex) $\overrightarrow{P Q}=\langle 2-(-1), 0-2,3-1\rangle$
$\overrightarrow{P Q}=\langle 3,-2,2\rangle$
* ir flip values subtracted $\left\langle x_{1}-x_{2}\right\rangle$,
then Hip direction vector pointing/
length same *
in fact, we also write $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ a vector as:

$$
v_{1} \cdot \tau+v_{2} \cdot \boldsymbol{\tau}+v_{3} \cdot \boldsymbol{k} \quad \text { (unit vectors } i, j, む k \text {) }
$$

ex) $\overrightarrow{P Q}=\langle 3,-2,2\rangle=3 t-2 J+2 \hat{k}$
length (magnitude): length of $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is given $\ldots$$\quad \begin{array}{r}|v|=\sqrt{v_{1}{ }^{2}+v_{2}{ }^{2}+v_{3}{ }^{2}} \longleftrightarrow \begin{array}{r}\text { already includes subtraction } \\ \text { of distance formula }\end{array}\end{array}$
ex) $\left.\begin{array}{rl}P & =(-1,2,1) \\ Q & =(2,0,3)\end{array}\right\} \quad v=\overrightarrow{P Q}=\langle 3,-2,2\rangle$ then... $|v|=\sqrt{(3)^{2}+(-2)^{2}+2^{2}}=\sqrt{17}$
$P=(-1,2,1)$
$Q=(2,0,3)$
$R=(0,0,4)$

two operations:

1)

add vectors: $\left\langle v_{1}, v_{2}, v_{3}\right\rangle+\left\langle w_{1}, w_{2}, w_{3}\right\rangle=\left\langle v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}\right\rangle$
ex)

$$
\begin{aligned}
& \overrightarrow{P Q}+\overrightarrow{Q R}=\left\langle\begin{array}{l}
v_{0} \\
\left\langle 3,-2, v_{2}\right. \\
v_{3}
\end{array}\right\rangle+\left\langle\begin{array}{c}
w_{1}, w_{2} \\
-2,0, \\
w_{3}
\end{array}\right\rangle \\
& =\langle 1,-2,3\rangle
\end{aligned}
$$

$$
\text { check: } \begin{aligned}
& \overrightarrow{P R} \\
\overrightarrow{P R} & =\langle 0-1,0-2,4-1\rangle \\
& =\langle 1,-2,3\rangle
\end{aligned}
$$

2) multiply by constant (scalar multiplication): $v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle, c$ real \#, the $R \ldots$

$$
c \cdot v=\left\langle c \cdot v_{1}, c \cdot v_{2}, c \cdot v_{3}\right\rangle
$$

remark: same direction (arrow flips if $c<0$), but length changes to

$$
|c \cdot v|=|c| \cdot|v|_{\substack{\text { absolute } \\ \text { value }}} \mid \underbrace{}_{\text {length }}
$$

